If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2-26a+15=0
a = 4; b = -26; c = +15;
Δ = b2-4ac
Δ = -262-4·4·15
Δ = 436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{436}=\sqrt{4*109}=\sqrt{4}*\sqrt{109}=2\sqrt{109}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-2\sqrt{109}}{2*4}=\frac{26-2\sqrt{109}}{8} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+2\sqrt{109}}{2*4}=\frac{26+2\sqrt{109}}{8} $
| 2x+20+x+70=180 | | 3(q+3/4)=23 | | 8z+18=98 | | 23(q+3/4)=23, | | 4x2−8x−23=0 | | 8h-15=79 | | -9c-1-c=-9c-5 | | 1.4x+5.5=-8 | | 7x-6=41 | | 5(q-79)=80 | | n+6=-9-2n | | 90=m-42 | | 40-2z=2 | | x4.0=8 | | 42-m=90 | | –13d+3d+–8d=18 | | 6(g-80)=54 | | 7x+10+7x-26=180 | | 45+n=325 | | Y-2=3y-16=2y-9 | | c+119=5 | | 2x-10+x-2=90 | | 5(5g-28)-25g+140= | | r-5(1/6=10 | | 2t+13=15 | | w+20/6=10 | | 6x+6=x=5=10 | | 11(c+1)=11 | | 6(t-89)=42 | | w+206=10 | | 1.9x+2.5=-5 | | -x/8=-20 |